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INTRODUCTION 

The d i lu t ion  method is  a means for  estimating, without: any d i r e c t  count, the 

The method cons is t s  i n  taking samples from density, h, of organisms i n  a l iquid.  

the l iquid,  incubating each sample i n  a su i t ab le  cu l ture  medium, and observing 

whether any growth of organisms has taken place. 

The probabi l i ty  model behind the d i l u t i o n  method is based on two main 

assumptions: (i) the organisms are d is t r ibu ted  randomly throughout the l iqu id  

and (ii) each sample from the l i qu id  when incubated i n  the cul ture  medium i s  

c e r t a i n  t o  exhib i t  growth whenever the sample contains one o r  more organisms. 

- 

- 

Any d i lu t ion  may be represented by a dose var ia te ,  d, such tha t  the densi ty  

i n  the d i l u t i o n  i s  Ad per u n i t  volume. 

values grea te r  than uni ty  (corresponding t o  concentrations of the o r ig ina l  sus- 

pension) can be t rea ted  with the same theory. 

consider values of d between 0 and . It follows then from assumptions (i) and 

Usually, d w i l l  be less than uni ty  but 

Throughout t h i s  paper we s h a l l  

(ii) s t a t e d  i n  the f i r s t  paragraph that  the number of organisms per sample, i n  

samples of u n i t  volume with d i l u t i o n  d, follows a Poisson d i s t r ibu t ion  w i t h  mean 

hd . 
Typically, samples of s i z e  nl,...,\ a re  taken from k preparations correspond- 

By sample s ize  here w e  mean the number of p la tes  . ing t o  d i lu t ion  leve ls  dl, ..., dk. 

taken from each preparation t o  be examined f o r  growth. 

observed numbers of steri le p l a t e s  corresponding t o  d i lu t ion  leve ls  dl,-..,dk. 

Based on t h i s  information, the problem of (a) est imat ing the bac te r i a l  densi ty  

and (b) planning of the experiment have been copiously t rea ted  i n  the l i t e r a t u r e .  

The wr i t ings  on the subject,  however, do not  incorporate i n  a formal manner the 

previous knowledge which the experimenter may have about the b a c t e r i a l  density. 

Thus I propose t o  inves t iga te  problems (a) and (b) using a Bayesian approach. 

Denote by xl,. ..,% the 

In 
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par t icu lar ,  I plan t o  organize the worlc as follows: 

b a c t e r i a l  density fo r  a given s e t  of d i lu t ion  leve ls  dl, . . .,d 

nl"-',nk' 

making use of the ex i s t ing  p r io r  information about the b a c t e r i a l  density, so as 

t o  minimize the expected value of an appropriate c o s t  function. 

(1) Bayes estimation of the 

and sample s izes  k 
(2) Design of the experiment and estimation of the bac te r i a l  density, 

As future work we plan t o  i n s e r t  a discussion of the problems involved i n  the 
c 

choice of a p r io r  d i s t r ibu t ion  and cost functions appropriate fo r  the problem under 

consideration. However i n  this essay, i n  order t o  ge t  some out r igh t  idea of the 

type of algebra and r e s u l t s  t o  be expected, w e  assume without fur ther  discussion 

t h a t  (i) a gamma p r i o r  on h i s  adequate fo r  a Bayesian ana lys i s  of the problem, 

(ii) the planning of the experiment concerns only the spec i f ica t ion  of the d i lu t ion  

levels which minimize the Bayes r i s k  corresponding t o  a quadratic l o s s  function. 

The cost of the observations is temporarily disregarded here  and the saqle  size 

is assumed t o  be fixed. A thorough treatment of problems (i) and (ii) f o r  

d i f f e r e n t  cos t  functions i s  t o  be included as p a r t  of the fu ture  plans. 

Section I of t h i s  report  deals  with review of l i t e r a t u r e .  Section I1 i s  

concerned with problem (1). 

successive experimentation, w e  discuss  a method t o  estimate the parameter h and 

design the experiment making use a t  each instance of a l l  the ava i lab le  information 

about the  bac te r i a l  density.  

i n  Sections I1 and 111. 

tions and w i l l  assist i n  the development of numerical methods when needed. 

plans a re  discussed i n  Section V. 

In  Section 111, fo r  the case of ten  encountered of 

Section I V  dea ls  w i t h  polygamma forms f o r  expressions 

It is  hoped t h a t  t h i s  w i l l  he lp  to  simplify the computa- 

Future 
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SECTION I 

REVZEW LInRATuRE 

For many years, bac te r io logis t s  have been using d i lu t ion  methods t o  give some 

idea of the number of organisms i n  the material examined. The problem of estimating 

the b a c t e r i a l  density, A, from t h i s  type of quantal experiment has long interested 

bac ter io logis t s  and s t a t i s t i c i a n s .  PlcCrady [ll] and Greenwood and Yule [ 6 ]  

introduced the "most probable number'' method which turns  out t o  be e s sen t i a l ly  

the maximum likelihood procedure. Fisher [5] indicated the method of maximum 

l ikelihood and i n  par t icu lar  considered the model with expectation 

with the values of w equally spaced at u n i t  intervals .  Halvorson and Ziegler [71 

have given tables  from which the maximum l ikelihood estimate can be read d i r ec t ly  

f o r  c e r t a i n  assay designs. Pinney [ 3 , 4 ]  suggested tha t  the maximum l ikelihood 

estimate of h may be obtained by the same type of iterative process as t ha t  used 

i n  probi t  analysis. Pet0 [12] gives tables t o  f a c i l i t a t e  the solut ion of the 

maximum likelihood equation and discusses the experimental ve r i f i ca t ion  of the 

- hypothesis. 

The estimation of the bac te r i a l  density i n  d i lu t ion  experiments has a l s o  been 

approached from the point of view of Spearman estimation. Johnson and Brawn [SI 

have discussed the model w i t h  expectation 

and with d = et fo r  equally spaced values of t. 

model and the one given by Fisher [5] is discussed by Cornell [ 2 ] .  

The re la t ionship  between t h i s  

A Bayesian approach t o  the bioassay problem i s  discussed by Kraft and Van 

Eeden [9]. The authors give a character izat ion of the c l a s s  of a l l  p r io r  
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dis t r ibu t ions ,  they f ind  the corresponding Bayes estimates f o r  a class of l o s s  

functions and they show the completeness of the closure of t h i s  type of estimates 

f o r  a c e r t a i n  topology. 

e x p l i c i t l y  computed. Thorslund i14 considers e x p l i c i t l y  the d i lu t ion  model, 

imposes a na tu ra l  conjugate p r io r  on the quant i ty  p = e 

two moments of - an ^p i n  the form of polygamma functions. 

A spec ia l  case is given fo r  which the estimates can be 

-hd and gives the f i r s t  

The design problem, which consis ts  of determining optimal ( in  some sense) 

From a consideration of the d i l u t i o n  levels,  has been less copiously t reated.  

approximate variance of h with a single d i lu t ion  leve l  and sample s i z e  one, 

Finney [4] recommends that d should be chosen so as to  s a t i s f y  

A 

Thus, i f  \ and Au are believed by the experimenter t o  be lower and upper bounds 

respect ively f o r  the bac te r i a l  density h, the  d i lu t ion  leve l  should be chosen so 

as t o  s a t i s f y  

2 - < d <  - 
U “L A (1.4) 

Cochran [l] points out  that t h i s  r u l e  is sa t i s f ac to ry  i f  a subs t an t i a l  number of 

samples, say 20 o r  more, are being taken a t  each d i lu t ion  level.  With very small 

numbers of samples per d i lu t ion ,  the rule  (1.4) i s  not qu i te  s t r ingen t  enough, i n  

t h a t  it allows too much r i s k  t h a t  a l l  the samples may be f e r t i l e .  
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SECTION I1 

Bayes estimate of h with fixed sample s izes  and d i lu t ion  levels .  

L e t  xl, ...,% be the number of steri le p la tes  observed i n  samples of s izes  

nl,. . . , % corresponding t o  d i lu t ion  levels  dl, . . . , dk, respectively. 

It is intended to f ind the Bayes estimate, A, of the bac te r i a l  density. W e  

assume that (i) a gannna pr ior  d i s t r ibu t ion  for  the parameter h, 

A - -  1 
god = W l  e ' h a ,  O < A <  , a > - 1  , B ' O  y (2.1) 

r(Q+l)$ 
is specif ied based on the experimenter's previous be l ie f ,  (ii) a quadratic loss  

function 

h A 2  L(h,A) = (A-A) (2.2) 

is considered t o  be an adequate measure of regre t  for  f a i l u r e  t o  estimate exact ly  

the parameter A. 

It should be noted that the pr ior  d i s t r ibu t ion  g(h) is  not a na tura l  conjugate. 

I n  fact ,  following Raiffa  and Schlaifer E131, we observe tha t  no procedure t o  

construct  a natural  conjugate pr ior  i s  avai lable  i n  t h i s  case since the s u f f i c i e n t  

s ta t is t ic  i s  (xl, ...,%) and i t  does not admit fur ther  reduction. 

From a r e s u l t  i n  Lehmann [lo, p. 231, the Bayes estimate of A, when a quadratic 

loss function is used, is given by 

where p(hlx) is the poster ior  density of A. 



- 6 -  

To obtain p(AIx) we r e c a l l  t ha t  

where J (x  

From 

- tha t  

h)  is  the l ikelihood of the observation vector. 

the remarks made i n  the f i r s t  paragraph of the Introduction, i t  follows 

k IC 

n -x i 1 +...+ i k - A E d j i j + x d  j j P  x d-] I f  we def ine  

A', (2.6) j=1 j=1 Dk@, n, "9 d, B, Y) = y..y (-1) e 

i =O k=O 1 

we can w r i t e  

It is  also convenient t o  define 

n -x Y l. 
5 

i l=O 

"k-\ i 1 +...+ i, 

F k ' O  
.. 1 (-1) 

l'"2 e il ) e;:) 
[ t d j i j + f d j x j $  j=1 f 
j=1 

Then it can be sham t h a t  the poster ior  densi ty  of A, given x, i s  
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and the  Bayes estimate of h is 

The ilayes r i s k  which is  equal t o  

reduces t o  

(2.10) 

(2.11) 

The expressions obtained f o r  the parameter estimate and the Bayes r i s k  are 

not easy t o  compute as i t  would be desirable  f o r  the r e s u l t s  to  have a prac t i ca l  

significance.  As fu ture  work, w e  intend to  consider asymptotic forms o r  

approximations i n  order t o  get the resul ts  into a usefu l  form. 
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SECTION I11 

Estimation Desim Successive Experimentation. 

The design of the typical  d i lu t ion  experiment involves the determination of 

the following elements : 

(i) Number o f  d i lu t ion  levels:  k 

(ii) A c t u a l  d i lu t ion  levels: d = (dl,. ,,dk) 

(iii) lumber of samples t o  be observed a t  each leve l :  n = (nl,. . . ,%). 

Thus the design of a d i lu t ion  experiment can be represented with the notation: 

It is common laboratory pract ice  t o  choose d accordins to a geometric e = (k,d,n). 

or  logarithmic scaling. 

w e  mean t h a t  d = a (i-l), f o r  i = 1, ..., k and a > 0. 

represented by e = (I:,a,n). 

I f  we denote by di the i* dilut ion,  by geometric sca l ing  
- 

The experiment can then be i 

By logarithmic sca l ing  w e  mean t h a t  

-w < wo < 0 ,  s > 0. , for  i = 1, ..., k and I n  t h i s  case the 
w +(i-1)s 

0 = e  di 

experiment can be denoted by e = (k,wo,s,n). 

It is our purpose t o  invest igate  i n  the future,  for  d i s se r t a t ion  work, the 

design of the experiment w i t h  respect to  a l l  the arguments involved i n  e, and we 

intend t o  do t h i s  with a Bayesian approach i n  order t o  make use of a l l  the ava i lab le  

information, subject ive or experimental, i n  designing the experiment. I f  the 

experimenter's subjective knowledge about the  b a c t e r i a l  density,  A, is  represented 

by a p r i o r  d i s t r ibu t ion ,  g(h), and i f  experimental data, x, from a previous 

experiment, e, are available,  w e  want to  consider the problem of designing the 

. 

I 

next experiment, e , i f  

cos t  associated with an 

our design procedure. 

one i s  t o  be performed, so as t o  minimize the expected 

appropriate cost  function and incorporating g, x and e i n  
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A treatment of the problem with such a generali ty w i l l  not be attempted here. 

We s h a l l  l i m i t  ourselves to  report  the work which has been done i n  a simplified 

version of the design problemwhich has been described above. 

I n  what fo l la7s  w e  assume tha t  

a) a gamma pr ior  d i s t r ibu t ion ,  as defined i n  (2.1), represents  the 

experimenter's convicticns absxt X, 

empirical information, x = (xl,. . . , \), corresponding t o  a previous 

experiment, e = (k,d,n), i s  available, The x ' s  a re  assumed to be 

independent. 

b) 

c) An experiment, e , i s  t o  be designed for  which we assume: 

1 

(cl) k = 1 

( c " )  the sample size,  n , is fixed 
1 

(c'") a quadratic loss  function, as defined i n  (2.2) w i l l  be 

used to compute the Bayes r i sk .  

The aim w i l l  be to  design an experiment, e 
1 ' I 

= (d ), choosing d so as to 

minimize the Bayes r i sk :  R(g,e,x,d ). It i s  hoped tha t  consideration of this 

simplif ied case tiill throw l i g h t  i n t o  the d i f f i c u l t i e s  t o  be encountered i n  a 

general treatment of the design problem. 
1 t 

Let x be the number of sterile plates observed a t  d i lu t ion  leve l  d and 

define 

(3.1) 
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The Bayes r i s k  will be given by 

(3.2) 

' I 1  

and D (h,x , n  , d  ,w,O) is as defined in (2.6). 

compute 

To obtain the estimate, A, we 1 

co 

= A p(hlx) dh , 
0 

where 

If we  subs t i tu te  for  p(A1x) expression (2.9) i n t o  (3.5) we have, s ince  

xl,. . . ,\, x 1 

are ifiddependent, 

(3 .4 )  
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Comparing (3.6) with (2.4) we see tha t  p(Xl2) can be obtained d i r e c t l y  from (2.9) 
- 

using E, Ti and d instead of x, n and d .  

From (2.10) w e  have tha t  

If we subs t i t u t e  i n  (3.2) f o r  A, &(xl lh)  and p(h)x)  expressions (3.7) and (2.9) 

respec t ive ly  we have tha t  the expression f o r  the Bayes r i s k  reduces t o  

where 
A 

1 The experiment w i l l  be designed, with respect  to  the d i lu t ion  level,  i f  6 is 
1 

found such tha t  R(g,e,x,6 ) i s  a minimum. 

note t h a t  R(g,e,x,d') as given i n  (3.81, depends on d' only through C(d'). 

To prove the exis tence of a minimum we 

Further, 
t 

C(d ) i s  always a pos i t ive  quant i ty  because the denomihator of each t e r m  i n  the 

sum (3.9) can be expressed as an in tegra l  whose integrand i s  always posi t ive.  

pa r t i cu la r  w e  have 

I n  

m 

(3.10) 

t where Dld-l(h,n,x,d,B,Cx) is  as defined i n  (2.6). Thus C(d ) is posi t ive and bounded 
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f o r  0 < d < a. C(d ) i s  a l s o  a continuous function f o r  0 < d < Q). Further, i t  

i s  easy t o  show 

and by repeated 

shown t h a t  

that 

(3.11) 

1 

use of L Hopital ' s  ru le  and of an induction argument i t  can be 

(3.12) 

9 

The above remarks, together with (3.11) and (3.12), imply t h a t  there exists some 6 

f o r  which C(d ) is  a maximum, although t h i s  maximum may not be unique. 

existence of some 6 

1 

Thus the 
1 

fo r  which the Bayes r i s k  (3.8) is  minimized has been establ ished.  

I n  order t o  f ind such a minimum I have u t i l i z e d  without success the tonventional 

The r e su l t i ng  expression, however, 
I 

R(g,e,X,d ) = 0. calculus  method of s e t t i n g  - 
does not lead t o  an e x p l i c i t  so lu t ion  for  d . Thus numerical methods should be 

contemplated as par t  of our future  work i n  order t o  obtain the value 6 which 

minimizes R(g,e,x,d ). 

a 
&I1 t 

1 

1 

I 

To obta in  the estimate of A, once the observation s has been taken a t  d i lu t ion  
1 1 I 

l eve l  S , i t  w i l l  su f f i ce  t o  subs t i t u t e  6 for  d i n  expression (3.7). 

It appears c l ea r  t ha t  the methods described i n  t h i s  Section f o r  the design 

problem are no simpler than those of Section 11. This f a c t  imposes the need f o r  

inves t iga t ing  ways t o  make the r e s u l t s  useful  from a p rac t i ca l  standpoint. As a 

means t o  this end w e  intend t o  consider asymptotic theory as a possible avenue to  

simpler Bayes estimates and hence t o  a s implif icat ion of the design problem. In  

the next Section we show that,  fo r  in tegra l  values of the parameter a, i t  i s  possible 

t o  express the Bayes estimates and Bayes r i s k s  obtained i n  Sections I1 and 111 i n  

the form of p o l y g m a  functions. It i s  hoped t h a t  t h i s  f a c t  w i l l  assist i n  the 

development of more t r ac t ab le  methods. 



If approximate methods can be successfully worked out, a comparison with the 

existing non-Bayesian estimation and design procedures w i l l  be mandatory and is 

to be considered an integral part of our future work. 
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SECTION IV 

Polypamma form fo r  expressions 2 Sections I1 and 111. 

I n  t h i s  Sec t ior  i t  w i l l  be shown t h a t  the Bayes estimate and the Bayes r i s k  

r e s u l t i n g  in Sections I1 and 111 can be expressed, f o r  i n t e g r a l  values of a, i n  

the form of polyganrma functions. It is recognized t h a t  this r e s t r i c t i o n  is  

undesirable and w e  intend t o  continue t o  work i n  order to extend the r e s u l t s  of 

t h i s  Section t o  non-integral values of a. It w i l l  su f f i ce  t o  discuss  the case 

where one s ingle  d i lu t ion  l eve l  is considered (k=l) i n  connection with the 

expressions of Section 11. 

1 Note that, by fac tor ing  - from the numerator and denominator on (2.10) and 
dl 

(2.12) and r eca l l i ng  the notation introduced i n  (2.8), w e  have t h a t  

and 

EI 

A =  E L  d 
1 n -x 

rX1  i1 il 
i 1=0 1 09-1 [i fx +---I 

1 1 Bdl 

where 

1 A(dl) = - 
dlW3 
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Set k =  x + -  and l e t  m be a posi t ive r e a l  number. Thus i f  w e  define 
1 dlS 

w e  can w r i t e  from (4.1) t h a t  

, (4.3) 

(4.4) 

Also, from (4.2) 

n 

A(dl) = - 
Wl 

1 1  

d Y 3  $6:) 
xl=o 

Sn ig) 

(m> 
Next w e  sha l l  show tha t  i f  m is a posi t ive integer the sum S~ (k) i n  (4.3) can be 

w r i t t e n  i n  the form of polygama functions. This w i l l  be s u f f i c i e n t  i n  order t o  

prove t h a t  the Bayes estimate and Bayes r i s k  can be expressed as polygauuna 

functions i f  we assume tha t  cr: i s  a posit ive integer.  

11 

Consider the Beta in t eg ra l  

i = O  

fo r  k > 0. Note tha t  (4.6) can also be integrated i n  the form 
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From ( 4 . 6 )  and (4.7) we have the equality 

i=O 

- Differentiating equation (4.8) with respect to k, w e  get 

i .e. ,  

J 

Thus we can obtain S(*)(k) by differentiating the righ- side of ( 4 . 8 )  w A t h  respect N 
to  k. This yields 

i = O  
N = (-1) N! (4.11) 

and from (4.10) and (4.11) we have 

N I& 
(2)(k) = N! i = O  

sN 
(k+i> 

i = O  

Proceeding i n  a similar fashion we can obtain S(3)(k) ,  N 

(4.12) 
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t 

Hence, 

(4.14) 

and t o  ge t  SA3)(k) we d i f f e r e n t i a t e  with respect t o  k the r i g h t  s ide of (4.12) 

which gives 

Thus from (4.14) and (4.15) we have 

i = O  - ( H i )  

N 
3 N! i = O  SN(k) = - 2! 

fl (Hi) 
i=o 

(4.16) 

We can f ind  similar expressions fo r  S(m)(k) fo r  other values of m by making use 
N 

of the recursive r e l a t ion  , 

(4.17) 
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Next we w i l l  show tha t  the follaJing r e su l t  holds: 

and 

(4.18) 

(4.19) 

(4.20) 

$'"(k> is  cal led the Digamma function, lp(2)(k) the Trigamma function, 1k(3)(k) the 

Tetragamma function and so on. 

To show (4.18) we f i r s t  note that  

r (k)  = r (k+W 1) 

K(M-1) - - (k+N) 
(4.21) 

Taking logarithm of both s ides  of (4.211, we have 

I'(lc) = JU I'(k+N+l) - k - Ju(ld.1) - * - e  - h ( I C f N )  . (4.22) 

Then taking the der ivat ive with respect t o  k of both s ides  of (4.22), we obtain 

(4.23) 
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Thus 
N 
'7 

l )  (k) (4 .24 )  

Differen t ia t ing  now both s ides  of (4.23) with respect t o  k and reca l l ing  the 

de f in i t i on  (4.19Iy we have 

I 
~ 

= $ (2 1 (ktW-1) - $ ( 2 ) ( k )  . (-1) 
i = O  

I 

(4.25) 

Hence 

(4 .26)  

Thus ( 4 . 1 8 )  holds for  m = 1,2. I f  we assume now (4 .18 )  t o  be t rue  for  m and take 

der iva t ive  with respect to k of both s ides  of (4 .18) ,  w e  have 

Thus 

Hence (4.18) holds t rue fo r  m + 1. 

true for  a l l  m t ha t  are posi t ive integers. 

Thus by the induction argument (4 .18)  holds 

From (4 .18 ) ,  (4 .21)  and the forms displayed i n  (4 .12)  and (4 .16)  fo r  the SUES 

("(k) and S ( 3 ) ( k ) ,  it becomes apparent t h a t  these forms can be expressed as a M 
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n 

r a t i o n a l  combination of polygamma functions. Hence the Bayes estimate h i n  (4.1) 

and A(d ) i n  ( 4 . 2 )  can also be expressed i n  the form of polygamma functions for 

i n t e g r a l  values of a. 
1 

It should be noted t h a t  t ab l e s  for the Digannna, Trigamma, Tetragamma and 

Pentaganma functions are ava i lab le  i n  the Handbook of Mathematical Functions 

ed i ted  by the National Bureau of Standards. Another source is H, T. Davis, - 
Tables of Hipher Mathematical Functions, Pr inc ip ia  Press, Bloomington, Indiana, 

Before concluding the Section we s h a l l  show t h a t  the following holds: 
I 

f o r  in teger  values of m grea te r  than one. 

For m = 2 we have from (4 .12)  and (4 .24 )  t h a t  

11 
i = O  

(4 .29)  

(4 .30)  

Thus (4 .29)  holds f o r  m = 2 .  

the de r iva t ive  with respec t  t o  k of both s ides  of (4 .29) ,  we have using (4.17) t h a t  

If we next assume (4 .29 )  t o  be t rue  fo r  m and take 

i = O  

Thus (4 .29)  holds f o r  m + 1. 

f o r  m = 2,3, ... . 
Hence by the  induction argument, (4 .29)  holds t rue  
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SECTION V 

FUTURE PLANS 

Throughout the previous sect ions we  have indicated which kind of extensions 

are thought t o  be per t inent  i n  order t o  complete a comprehensive Bayesina treat- 

ment of the estimation and design problems involved i n  d i lu t ion  experimentation. 

I n  t h i s  Section w e  w i l i  summarize the suggestions which have been made thus f a r  

and w i l l  point out  other  extensions which may be comtemplated i n  the future. 

1. The design problem w i l l  be investigated with respect  t o  a l l  the var iab les  

involved i n  a typ ica l  d i lu t ion  experiment: sample size,  d i l u t i o n  leve ls  

and number of d i l u t i o n  levels to  be used. 

given to  the geometric and logarithmic d i l u t i o n  series described i n  

Section 111. 

With regard t o  cos t  functions, w e  plan t o  r e s t r i c t  outselves t o  what 

Rai f fa  and Schla i fe r  1131 c a l l  addi t ive  cos t  functions. 

a terminal act by a, we  have that,  f o r  these functions, 

Special a t t e n t i o n  w i l l  be 

2. 

I f  we denote 

where C (e,x) i s  the sampling c o s t  and C (a,h) i s  the terminal cost .  I n  

pa r t i cu la r  we w i l l  assume tha t  the sampling c o s t  i s  a l inea r  function of 

the sample size, 

S t 

C (e,x) = a + b n (5 .2 )  S 

and t h a t  

where p is  a constant t h a t  brings C and C i n t o  a common "numeraire" 

and L(a,h) is the  loss function. 

S t 
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Thus far ,  w e  have r e s t r i c t e d  our a t t en t ion  t o  a quadratic loss  function 

mostly because 

I n  future  work 

L(a,X) = 

h 

f o r  which A is 

h 

the Bayes estimate, h, i s  e a s i l y  obtained as 

we are planning t o  consider 

n 

1A-h I 

(5.4) 

(5.6) 

given by the median of the pos te r ior  d i s t r ibu t ion  of A. 

(See khmann [IO, p. 231). 

The classical problem of test of hypothesis can a l s o  be discussed within 

this framework. L e t  Ho:h E and H :A E %. Denote by a the statement: 

accept H and by a the statement: reject H Suppose t h a t  the following 

cos t  or  l o s s  t ab le  i s  given 

a 0 

0 1 0' 

(5.7) 

where C and C are cos ts  attached t o  a wrong decision. Then the design 1 2 
problem can be d e a l t w i t h  i n  the same manner as with the other l o s s  

functions discussed above, namely by minimizing the  function 

m 

d ( e )  = E 

with respect  to the elements of e: 

minJ C(e,x,a,x) g(X) dh 
xle a 0 

sample s ize ,  d i l u t i o n  leve ls  and 

number of d i l u t i o n  levels. 
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3. 

4. 

5 .  

6. 

Tractable expressions fo r  the Bayes estimate and Bayes r i s k  w i l l  be sought. 

It appears from the preliminary r e s u l t s  obtained i n  Sections I1 and III 

t h a t  i n  order t o  make this research usefu l  from a p rac t i ca l  standpoint 

it is of paramount importance t o  obtain simpler expressions f o r  the para- 

meter estimate and hence for  the Bayes r i s k  involved i n  the design problem. 

We intend to expiore the p o s s i b i l i t i e s  which may exist i n  the polygammn 

forms derived i n  Section IV and i n  t h i s  connection w e  w i l l  attempt t o  

extend the r e s u l t s  of Section I V  t o  the case where the parameter a of the 

gamma p r io r  d i s t r ibu t ion  is  not an in teger  value. 

the parameter estimate w i l l  a l s o  be considered as  a possible source of 

s impl i f ica t ion  f o r  the estimation and design problems. 

Tables to  assist i n  the computation of the parameter estimate as w e l l  as 

i n  the design of the experiment w i l l  be included as a p a r t  of fu ture  work. 

The problem of haw much e f f e c t  the use of p r io r  knowledge has on the 

parameter estimate and on the design of the experiment w i l l  a l so  be 

considered. 

The Bayesian approach suggested i n  t h i s  report  for the estimation and 

design problems i n  d i l u t i o n  experiments w i l l  be extended to  other  

biological  assay models including models with the normal and l o g i s t i c  

d i s t r ibu t ions  of tolerances. 

class of m o d e l s ,  of which the above models would be pa r t i cu la r  cases, i s  

contemplated. 

Approximate forms fo r  

This i s  what Raiffa and Schla i f fe r  c a l l  Sens i t i v i ty  Analysis. 

As a fur ther  step,  an extension t o  a general  

7. Examples to  i l l u s t r a t e  procedures and methods w i l l  be included. 
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